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Quantitative Analysis of Individual Sugars and Acids in Orange
Juices by Near-Infrared Spectroscopy of Dry Extract

Weijie Li, Pierre Goovaerts,’ and Marc Meurens*
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The combination of near-infrared spectroscopy (near-IR) and multivariate calibration for determi-
nation of glucose, fructose, sucrose, and citric and malic acids in orange juices was investigated.
The concentrations of these components analyzed by enzymatic assays were considered as references
relative to near-IR spectroscopy. Dry extract spectra of 218 orange juice samples were recorded in
transmission mode between 1100 and 2500 nm. The original near-IR spectral data could be improved
by mathematical pretreatments such as derivative transformations or multiplicative signal
correction. Stepwise multiple linear regression (SMLR) and partial least-squares regression (PLSR)
were used to create calibration models relating chemical reference values to spectral data. The
prediction ability of calibration models is acceptable in comparison with the reference methods.
The calibration and validation results provided by PLS-1 calibration models are slightly better than

those obtained with SMLR calibration models.
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INTRODUCTION

The orange juice market alone in Europe and the
United States was estimated to be in excess of £4 billion
(Robertson, 1988). Thus, it becomes increasingly im-
portant to have adequate analytical techniques for
guantitative analysis of major components in orange
juices. The conventional laboratory analysis of fruit
juices such as wet chemistry testing is generally labori-
ous and time consuming. In contrast, near-infrared
(near-IR) spectroscopy has proved to be a rapid and
accurate technique for a wide range of analytical ap-
plications and has emerged as an interesting alternative
to wet chemistry in analysis and quality control of
agricultural and food products (Osborne and Fearn,
1986; Barton, 1987). Near-IR spectroscopy has been
used for determining individual sugars in dry fruit
model systems by Giangiacomo et al. (1981). Lanza and
Li (1984) have performed fruit juice analysis using near-
IR transmittance, yet they determined only total sugars.
In this paper, the performance of near-IR spectroscopy
for determining individual sugars and acids is investi-
gated.

In the analysis of aqueous solutions, such as fruit
juices, overlap of the vibrational bands of water with
those of the solutes is inevitable, resulting in broad
contours that cannot usually be deconvoluted into their
constituents (Fischer et al., 1994). In this case, near-
IR spectroscopy can be made more sensitive and more
accurate by placing the liquid sample on a fiberglass
support and eliminating water until dry extract is
obtained. This method has been developed by Meurens
etal. (1982, 1990) to analyze aqueous solutions. Studies
on the analysis of synthetic solutions of sugars and of a
limited number of fruit juice samples by near-IR reflec-
tance of dry extract on fiberglass filters have been
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published (Alfaro et al., 1990, 1991). The present aim
is to report the analytical results of near-IR spectroscopy
obtained by transmittance of dry extract on a large
collection of orange juice samples.

For each particular component, near-IR spectroscopy
requires calibration of the instrument by a recognized
laboratory method known as a reference method. In
this study, individual sugars and acids in orange juices
were determined by enzymatic methods. The stepwise
multiple linear regression (SMLR) and the partial least
squares regression (PLSR) algorithms can be used to
establish mathematical relations (i.e., calibration mod-
els) between chemical reference values and spectral data
for each component being measured. The SMLR cali-
bration models are built up using a stepwise procedure
that selects wavelengths as long as their contribution
to the model is statistically significant (Mark, 1992). In
contrast, the PLSR algorithm is a full-spectrum method
that provides extensive possibilities for extracting in-
formation, both with respect to the variables and to the
objects, to make the calibration models (Martens and
Naes, 1989). In this paper, both SMLR and PLSR
methods were applied to orange juice analysis by near-
IR spectroscopy and their results were compared.

Mathematical pretreatments of near-IR spectra should
enhance the qualitative interpretation of spectra and
the prediction ability of calibration models. Derivative
transformations could partially compensate for baseline
offset between samples and reduce instrument drift
effects (Norris, 1982). Another property of these trans-
formations is to invert the spectrum so that the peaks
become narrow valleys (Shenk et al., 1992). In near-
IR measurement, light scattering and sample thickness
have multiplicative effects whereas chemical absorption
has additive effects. The multiplicative signal correction
(MSC) is a kind of standardization of spectral data that
allows the separation of additive and multiplicative
effects from each other (Martens and Naes, 1989). In
this paper, effects of mathematical pretreatments of the
spectral data of dry extracts of orange juices on the
calibration results were also investigated.
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MATERIALS AND METHODS

Samples. Orange juices, including single strength juices
and pulp washes (120 samples) and concentrates (98 samples),
were collected from different countries in Europe, Africa, and
America. These samples had been previously analyzed by
Schutzgemeinschaft der Fruchsaftindustrie within the frame
of the FLAIR research project of the Commission of the
European Communities on new technology and laboratory
methodology for glucose, fructose, sucrose, and citric and malic
acids by enzymatic methods (Boehringer, Mannheim, Ger-
many). These results were used as chemical reference values
in contrast with near-IR spectral data for the multivariate
calibration.

Prior to near-IR spectroscopy, the concentrates were diluted
to 11.18° Brix (w/w) with distilled water, whereas the single
strength juices and pulp washes were homogenized by a
Kontes homogenizer. Then each orange juice sample (0.6 mL)
was pipetted and deposited on a fiberglass disk (Millipore
AP40047) inside a centralizing device and was dried for 4 min
in a special dryer, named DESIR (Dry extract system for
infrared), unit. This DESIR unit, designed by NIRSystems
(Perstorp Analytical Co.), is a thermostat-controlled fan oven
operating at temperatures between 45 and 50 °C (Meurens
and Alfavo, 1990). Immediately after drying, the fiberglass
filter was placed between two glass windows in a sample cup
for near-IR scanning.

Near-IR Spectroscopy. All near-IR measurements were
made with a Pacific Scientific spectrometer Model 6250 in
combination with an IBM computer Model PS/2 using the
NSAS software version 3.30 of NIRSystems. This spectro-
meter has a single-beam scanning monochromator that pro-
vides a linear scan over the 1100—2500 nm range at intervals
of 2 nm. The absorbances of orange juice samples were
recorded in the transmission mode as log(1/T) (T = transmit-
tance).

The spectrum of each orange juice sample was calculated
as the average of six spectra, which were obtained using two
fiberglass disks and, for each disk, three positions (0°, 120°,
and 240°) of the sample cup inside the spectrometer. The
measurement of each spectrum was separately scanned 10
times from 1100 to 2500 nm. The reference spectrum was
obtained by scanning a blank fiberglass disk.

Database Analysis. The acquisition of near-IR spectra for
a set of calibration samples (called the calibration set) allows
one to establish calibration models relating spectral data to
chemical reference values for each component being analyzed.
Such calibration models can be checked using a set of valida-
tion samples (called the validation set) that are not part of
the calibration set but are similar to those with respect to
constituent ranges, physical state, origin, etc. The check
proceeds as follows: (1) spectral data are collected and
interpolated into a calibration model to predict concentration
values and (2) these estimates are then compared with
chemical reference values in terms of residual variance and
correlation coefficient.

In this study, the 218 orange juice samples were split into
two groups of 150 and 68 samples, respectively. The first
group of 150 samples was used to establish the calibration
models for determination of glucose, fructose, sucrose, and
citric and malic acids. The validity of these models was
assessed using the remaining 68 samples. Note that the
samples were randomly assigned to either the calibration set
or the validation set, except for the samples with maximum
and minimum values for each component that were put into
the calibration set so as to span the complete range of
component concentrations during the calibration modeling.
Tables 1—3 show for each sample set the statistics of compo-
nent concentrations measured by enzymatic methods.

The SMLR algorithm is included in the software package
NSAS 3.30, whereas the PLSR algorithm is applied by the
software package Unscrambler 5.5 of CAMO A/S (Trondheim,
Norway). The PLSR method in Unscrambler allows efficient
detection of outliers that are not representative of the calibra-
tion and validation sets (Unscrambler, 1994). Outliers were
detected by looking at residuals provided by a calibration
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Table 1. Statistics of Component Concentrations
Measured by Enzymatic Assays for the Total Sample Set
(218 samples) (Unit = g/L)

glucose fructose sucrose citricacid malic acid

min value 4.10 4.70 6.50 0.80 0.28
max value  39.30 44.00 95.20 23.40 3.41
average 20.61 22.45 37.28 9.78 1.55
sb2 5.05 5.39 12.97 4.68 0.59

a SD = standard deviation.

Table 2. Statistics of Component Concentrations
Measured by Enzymatic Assays for the Calibration Set
(150 samples) (Unit = g/L)

glucose fructose sucrose citric acid malic acid

min value 4.10 4.70 6.50 0.80 0.28
max value 39.30 44.00 95.20 23.40 3.41
average 20.59 22.40 36.32 9.79 1.53
SD 5.50 5.82 13.54 4.91 0.60

Table 3. Statistics of Component Concentrations
Measured by Enzymatic Assays for the Validation Set
(68 Samples) (Unit = g/L)

glucose fructose sucrose citricacid malic acid

minvalue 10.60 11.60 9.50 3.50 0.47
max value  29.30 34.50 71.70 23.20 3.10
average 20.68 22.55 39.36 9.74 1.59
SD 3.91 4.34 11.45 4.15 0.57

Table 4. Number of Outliers Detected by Multivariate
Calibration in Quantitative Analysis of Orange Juices

number of outliers for

glucose fructose sucrose citric acid malic acid

calibration 9 6 9 6 7
validation 3 5 4 7 8

model and identifying points that are both suspect and
influential on the score plot of the first two principal compo-
nents. The largest outliers had been identified after prelimi-
nary calibration, and they were eliminated first. The calibra-
tion modeling was repeated until all outliers had been re-
moved. The same outliers were discarded for SMLR algorithm
to be compared with the PLSR in the orange juice analysis.
Table 4 shows the number of outliers detected by the calibra-
tion model for the quantification of individual sugars and acids
in the orange juices.

Statistics. The performance of a calibration model to
predict component concentrations based on spectral data can
be assessed using the prediction error and the correlation
coefficient between estimates and chemical reference values.
The three following statistics (Martens and Naes, 1989) were
used in this paper:

1. Root mean square error of prediction (RMSEP) is
computed as the square root of the average squared difference
between chemical reference and predicted values

1)

where n is the number of validation samples, i is the near-IR
predicted value and y; is the chemical reference value provided
by the reference method.

2. Standard error of prediction (SEP) is the square root of
the prediction variance and is computed as

n

SEP =

>0y Biasy: @

where Bias is estimated by
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3. Correlation coefficient between predicted and chemical
reference values
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where § = average value of ¥;, y = average value of y;.

RESULTS AND DISCUSSION

Mathematical Pretreatments of Near-IR Spec-
tra. The objective of mathematical pretreatments of
original spectra is 2-fold: (1) make all major interferents
vary as independently as possible of each other in the
samples and (2) reduce the influence of light scattering
variation with a potential improvement of calibration
results.

Derivative transformations of spectra aim to glean
additional information from the original spectra and to
avoid somewhat band interference and overlap when
several components are measured simultaneously. Fig-
ure 1 shows the spectrum of a dry extract of orange juice
before and after derivative transformations. The origi-
nal spectrum log(1/T) has broad overlapping absorption
bands. The first and second derivative transformations
sharpen these absorption bands and so facilitate their
separation. Either the first or second derivative can be
used, yet the correlation plot is more easily interpreted
for the second derivative results because the spectrum
has minimum values at the wavelengths at which the
log(1/T) spectrum has maximum values. A shortcoming
of the second derivative transformation is that two false
valleys are generated in the positive ordinate scale for
every band in a negative direction (Hruschka, 1992).
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Multiplicative Signal Correction (MSC) of spectra
allows the separation of the multiplicative effects due
to light scattering and sample thickness from the
additive effects due to the chemical absorption. Figure
2a shows the original spectra for some orange juice
samples. Multiplicative and additive effects lead to the
baseline shifts of the original spectra. In this study,
the light absorbances within the wavelength interval
1900—2000 nm (the main water absorption peak) are
independent of the component being measured, and so
they provide no relevant information. Consequently,
the wavelengths from 1900 to 2000 nm were chosen as
base variables for MSC standardization, and the origi-
nal spectra were corrected until all spectra have similar
absorption scatter level (Figure 2b).

Selection of Mathematical Pretreatments. Different
calibration models, which were established on the basis
of different transformed spectra of orange juices, were
appraised by prediction error. For example, Figure 3
shows the estimated prediction error provided by dif-
ferent calibration models to determine glucose. Math-
ematical pretreatments tend to reduce the mean square
error relative to original spectral data, better results
being obtained for the first and second derivative
transformations. These results confirm the utility of
pretreatments prior to calibration. The selection of the
mathematical pretreatments usually depends on final
regression results. In the example above, the first
derivative was chosen because it yields the lowest
prediction error.

Calibration and Prediction. In this section, we
discuss and compare SMLR and PLSR performances to
determine the concentrations of individual sugars and
acids in orange juices.

SMLR algorithm has been the cornerstone of near-
IR spectroscopy for more than 30 years and is based on
the forward calibration model,

Y=XB+F @)

where Y is the component concentration matrix, X is
the absorbance data matrix, and F is the residual

Absorbance

log (1/T)

1st derivative

2nd derivative

1100

2500

Wavelength (nm)
Figure 1. Spectra of a dry extract of orange juice sample before and after derivative transformations.
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Figure 2. Comparison between the original and MSC standardized spectra of orange juices: (a) original spectra and (b) MSC
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Figure 3.
concentration in orange juices.

matrix. A calibration model in SMLR is built up by
adding wavelengths one at a time, each wavelength
being chosen so that the resulting model yields the
smallest residual sum of squares possible. The starting
point for such a stepwise procedure is usually the
wavelength that gives the best one-term model. In this
study four terms have been included in calibration
models for the individual sugars and acids of orange
juice samples so as to obtain a good compromise between
thoroughness and efficiency.

The prediction ability of SMLR calibration models is
assessed using the statistics (1—3), and their values are
listed in Table 5. For each sugar and acid, results relate
to the mathematical pretreatment that provides the best
reestimation scores, see Table 5 (right column). The

Impact of mathematical pretreatments of the original near-IR spectral data on the prediction error of glucose

large values of the correlation coefficients indicate that
the values predicted by the calibration models based on
spectral data fit well the chemical reference values.

PLSR algorithm belongs to the class of bilinear
regression methods that could approximate complicated
multivariate input data by a few bilinear PLSR factors
T or principal components (PCs), which account for most
of the variance of all the variables. The full bilinear
calibration model can be written as

X=TP+E
Y=TQ+F (5)

where the loading matrix P represents the regression
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Figure 4. Calibration and prediction results provided by the PLS-1 algorithm for determination of glucose in orange juices: (a)
calibration variance, (b) validation variance, (c) predicted vs reference values for validation set, and (d) predicted values with

deviations for prediction set.

Table 5. Prediction Results of SMLR Calibration Models
for the Orange Juice Analysis

RMSEP SEP
(g/L) (g/lL) r wavelength (nm) method
glucose 1.80 1.72 0.88 2240/2096/2306/2226 D10D?2
fructose 1.93 1.82 0.90 1882/2278/2176/2300 MSC
sucrose 3.42 3.06 0.95 2272/2194/2110/1844 D10OD
citric acid 1.18 0.77 0.95 1734/2342/2316/1894 D20DP
malicacid 0.26  0.21 0.82 2274/1936/2294/1462 D10D

a First derivative.  Second derivative.

coefficients of X on T in the same way as Q represents
the regression coefficients of Y on T. The residual
matrices E and F represent the variation in X and Y
that are not explained by the bilinear structure, respec-
tively.

Two PLS algorithms can be distinguished: PLS-1
handling only one Y-variable at a time, and PLS-2
handling several Y-variables simultaneously. PLS-2
regression is useful for a preliminary overview in
exploitative data analysis. When nonlinearity, rather
than random noise, is the major problem, a better
approach would consist of performing PLS-1 on each

Y-variable separately (Martens and Naes, 1989). It is
the reason why only the PLS-1 calibration models are
used hereafter.

Similar to SMLR calibration the prediction ability of
PLS-1 calibration models with the best mathematical
pretreatments are summarized using three statistics
listed in Table 6. Comparison of Tables 5 and 6 shows
that PLS-1 regression generally provides better predic-
tion of individual sugar and acid concentrations in
orange juices.

An important parameter of the PLS-1 algorithm is
the number of PCs that are included in the calibration
model: using too few PCs can leave important near-IR
structure unmodeled whereas using too many PCs
draws too much measurement noise from the X and Y
data into the calibration model. The optimal number
of PCs can be chosen as the number associated with the
first local minimum in the plot of the validation variance
as shown in Figures 4b and 5b. Higher order PCs give
arise in the residual variance and hence are considered
as irrelevant.

Figure 4 shows calibration and prediction results for
the determination of glucose in orange juices. Glucose



Analysis of Orange Juices by Near-IR

|9 Xeverience exmpt

c.Tot'

PCs
T

T T T
PCO ?C5 PC_10 PC_15 PC_20 PC_25|

(a) D2 3, varisble: ¢.Tot

J. Agric. Food Chem., Vol. 44, No. 8, 1996 2257

Residual Y-varience

021 |

Optimal model =22 PCs

0.18

015

0.09 |

0.06

0.03 | PCs

(b 42-3, verisble: v.Tot

| Predicted (with 22 PCs)

0.5 ]

Reference
T T L I e e
0.5 1.0 15 20 2.5 3.0

MALICACL

(C) d23-d2-3, Yovar:

| Predicted
30

‘1 oml |

- i

LY

03

MALICACI

(d) d23-42-3, Y-var.

Figure 5. Calibration and prediction results provided by the PLS-1 algorithm for determination of malic acid in orange juices:
(a) calibration variance, (b) validation variance, (c) predicted vs reference values for validation set, and (d) predicted values with

deviations for validation set.

Table 6. Prediction Results of PLS-1 Calibration Models
for the Orange Juice Analysis

RMSEP (g/L) SEP (g/L) r PCs method
glucose 1.57 1.57 0.92 7 D10D
fructose 1.53 1.54 0.93 12 MSC
sucrose 3.20 3.02 0.96 9 D20D
citric acid 0.92 0.91 098 14 MSC
malic acid 0.20 0.21 090 22 D20D

is one of the major components in the orange juices, and
its average concentration in the validation set is 20.68
g/L. According to the criterion in the previous para-
graph, seven PCs have been chosen as the optimal
number of PCs to retain in the final model for the
prediction of glucose (Figure 4b); they explain 95% of
the variance of spectral measurements (Figure 4a). The
prediction ability of the optimal calibration model is
illustrated in Figure 4c,d. Figure 4c shows a good
correlation between predicted values and known chemi-
cal reference values. The reliability of the prediction
is illustrated in Figure 4d that shows, for each of the
validation samples, the predicted value and the corre-
sponding deviation: actual value = predicted value +

deviation. Values of the deviation are computed by an
empirical formula that accounts for the Y-residual
variance in the validation set from the calibration step,
X-residual variance in the prediction object and the
average X-residual variance in the validation set (Un-
scrambler, 1994).

Figure 5 shows calibration and prediction results
provided by PLS-1 algorithm for the determination of
malic acid in orange juices. The average concentration
of malic acid (1.59 g/L) in the validation set is smaller
than for other components, see Table 4. Figure 5a
indicates that a large proportion of X-variance in the
calibration set is explained by the PLS-1 calibration
model. However, the variance curve in Figure 5b shows
that the validation residual variance reaches its first
local minimum only after 22 PCs. Clearly, the explana-
tion of original variance by the optimal model for malic
acid needs more PCs extracted from the spectral data
relative to other components (Table 6). Note also that
more outliers were detected during the calibration
modeling of malic acid than for the other components
(Table 4). The deviations between chemical reference



2258 J. Agric. Food Chem., Vol. 44, No. 8, 1996

807

CVV (%)
6

Li et al.

CISMLR

WPLSR 5

21

o3 o

9.34

Glucose Fructose

Sucrose

Citric acid Malic acid

Figure 6. CVV values provided by SMLR and PLSR algorithms for the orange juice analysis.

and predicted values for malic acid shown in Figure 5d
are relatively worse than for glucose in Figure 4d. This
means that the predicted values for malic acid are less
reliable than those of glucose, which is due to the small
average concentration of malic acid relative to glucose.

Comparison of SMLR and PLSR. The SMLR is a
traditional calibration method that calls for a wave-
length selection procedure, whereas the PLSR is a
predictive two-block regression method based on esti-
mated latent variables rather than on the optical data
directly. The SMLR approach may give better prediction
results than the PLSR method, because the SMLR
eliminates those X-variables that are not relevant. In
addition, noninformative curvatures may contaminate
the full spectrum calibration models such as PLS-1
models. Nevertheless, the response of a scanning NIR
instrument at different wavelengths is usually highly
collinear. A problem therefore arises in SMLR since
each X-variable is assumed to bring unique information
about Y. Inthe PLSR, using estimated latent variables,
the collinearity in the X data is considered as a stabiliz-
ing advantage rather than as a problem (Bjgrsvik and
Martens, 1992). Thereby the PLSR method is expected
to give more reliable predictions.

It is evident that the variety in the approaches to
calibration stems from its empirical nature; none of the
methods is theoretically more sound than the others,
and they must be judged by what they achieve. Com-
parison of Tables 5 and 6 indicates that the prediction
results of SMLR and PLS-1 calibration models are very
close. The SMLR is still a workable alternative, al-
though PLSR gives slightly better results than SMLR
for the determination of individual sugars and acids in
orange juices.

To account for the ranges of component concentrations
in the validation set, the prediction results of SMLR and
PLSR algorithms are compared using a coefficient of
variation for validation defined as

SEP

where Y is the mean of chemical reference values and
SEP is the standard error of prediction defined in (2).
CVV values were computed for individual sugars and
acids analyzed by both SMLR and PLSR algorithms.
Figure 6 shows that PLSR gives the better CVV values

for three individual sugars, but for the determinations
of the individual acids, SMLR is also a good calibration
method.

CONCLUSION

Near-IR spectroscopy combined with multivariate
calibration is an easy and rapid technique for the
simultaneous determination of individual sugars and
acids in orange juices. It is shown that the DESIR
technique leads to easy sampling and reliable measure-
ment in near-IR spectroscopy application for the aque-
ous solution analysis. Mathematical pretreatments of
original spectral data prior to calibration improve the
calibration and prediction results. Both SMLR and
PLS-1 algorithms based on the near-IR spectral data
allow for the quantitative analysis of component con-
centrations in orange juices. The limitation of the
method is that minor components such as malic acid
cannot be determined with an acceptable precision (CVV
< 10%). In the future, one should investigate different
methods of spectral standardization to improve the
sensitivity and precision of the near-IR spectroscopy
analysis.

ABBREVIATIONS USED

CVV, coefficient of variation for validation; D10D,
first derivative; D20D, second derivative; DESIR, dry
extract system for infrared; MSC, multiplicative signal
correction; near-IR, near infrared; PCs, principal com-
ponents; PLSR, partial least squares regression; r,
correlation coefficient; RMSEP, root mean square error
of prediction; SEP, standard error of prediction; SMLR,
stepwise multiple linear regression.
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